Precious metal carborane polymer nanoparticles: characterisation of micellar formulations and anticancer activity.

نویسندگان

  • Nicolas P E Barry
  • Anaïs Pitto-Barry
  • Isolda Romero-Canelón
  • Johanna Tran
  • Joan J Soldevila-Barreda
  • Ian Hands-Portman
  • Corinne J Smith
  • Nigel Kirby
  • Andrew P Dove
  • Rachel K O'Reilly
  • Peter J Sadler
چکیده

We report the encapsulation of highly hydrophobic 16-electron organometallic ruthenium and osmium carborane complexes [Ru/Os(p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolate)] ( and ) in Pluronic® triblock copolymer P123 core-shell micelles. The spherical nanoparticles and , dispersed in water, were characterized by dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), and synchrotron small-angle X-ray scattering (SAXS; diameter ca. 15 and 19 nm, respectively). Complexes and were highly active towards A2780 human ovarian cancer cells (IC(50) 0.17 and 2.50 μM, respectively) and the encapsulated complexes, as and nanoparticles, were less potent (IC(50) 6.69 μM and 117.5 μM, respectively), but more selective towards cancer cells compared to normal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Gold and Iron Oxide Nanoparticle-Based Ethylcellulose Nanocapsules for Cisplatin Drug Delivery

The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Nanocapsules of cisplatin containing ethylcellulose have been prepared using solvent evaporation technique under ambient conditions. The prepared nanocapsules were used for controlled drug release of anticancer agents with gold and iron oxide nanoparticles. ...

متن کامل

Gold and Iron Oxide Nanoparticle-Based Ethylcellulose Nanocapsules for Cisplatin Drug Delivery

The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Nanocapsules of cisplatin containing ethylcellulose have been prepared using solvent evaporation technique under ambient conditions. The prepared nanocapsules were used for controlled drug release of anticancer agents with gold and iron oxide nanoparticles. ...

متن کامل

Carbon nanocomposite catalysts for oxygen reduction and evolution reactions_ From nitrogen doping to transition-metal addition

ticle as: G. Wu, et n-metal addition, Abstract Oxygen reduction reaction (ORR) and evolution reaction (OER) are one pair of the most important electrochemical reactions associated with energy conversion and storage technologies, such as fuel cells, metal–air batteries, and water electrolyzers. However, the sluggish ORR and OER requires a significantly large quantity of precious metals (e.g., Pt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 175  شماره 

صفحات  -

تاریخ انتشار 2014